125 research outputs found

    The Radial Anisotropy of the Continental Lithosphere From Analysis of Love and Rayleigh Wave Phase Velocities in Fennoscandia

    Get PDF
    Radial anisotropy (RA) in the upper mantle of the Fennoscandian Shield is analyzed by joint inversion of Love and Rayleigh wave phase velocities measured from recordings of teleseismic events at the ScanArray network. The phase velocities are measured by beamforming using three geographical subsets of the network as well as the full network. We analyze how different procedures for determining the phase velocities influence the final result and uncertainty. Joint inversion of the phase velocities in the period range 22–100 s reveals the presence of similar RA in the three subregions, with an average Ο value of about 1.05 in the subcrustal lithosphere down to at least 200 km depth. This corresponds to SH waves faster than SV by 2%–3%, a value very similar to those found in other continental regions. Considering this anisotropy together with other observables pertaining to seismic anisotropy in the area, we cannot propose a unique model satisfying all data. We can show, however, in which conditions different types of olivine crystallographic preferred orientations (CPOs) commonly observed in natural samples are compatible with the observations. CPO types associated with the preferred orientation of the a-axis, in particular the common A-type CPO, require a-axes dipping not more than 25° from the horizontal plane to explain our observations. AG-type CPO, characterized by preferred orientation of the b-axis and occurring in particular in compressional settings, can be considered as an interesting alternative interpretation of continental lithospheric anisotropy, provided the olivine b-axis is dipping by at least 60°

    Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    Get PDF
    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr−1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting

    Crustal Structure of Sri Lanka Derived From Joint Inversion of Surface Wave Dispersion and Receiver Functions Using a Bayesian Approach

    Get PDF
    We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 to shed light on the amalgamation process from a geophysical perspective. Rayleigh wave phase dispersion curves from ambient noise cross correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach. The Moho depths in Sri Lanka range between 30 and 40 km, with the thickest crust (38-40 km) beneath the central Highland Complex (HC). The thinnest crust (30-35 km) is found along the west coast, which experienced crustal thinning associated with the formation of the Mannar Basin. V-P/V-S ratios lie within a range of 1.60-1.82 and predominantly favor a felsic to intermediate bulk crustal composition with a significant silica content of the rocks. A major intracrustal (18-27 km), slightly westward dipping (similar to 4.3 degrees) interface with high V-S (similar to 4 km/s) underneath is prominent in the central HC, continuing into the western Vijayan Complex (VC). The discontinuity might have been part of the respective units prior to the collision and could be an indicator for the proposed tilting of the Wanni Complex/HC crustal sections. It might also be related to the deep crustal HC/VC thrust contact with the VC as an indenting promontory of high V-S. A low-velocity zone in the central HC could have been caused by fluid influx generated by the thrusting process

    Comment on “Potential short‐term earthquake forecasting by farm animal monitoring” by Wikelski, Mueller, Scocco, Catorci, Desinov, Belyaev, Keim, Pohlmeier, Fechteler, and Mai

    Get PDF
    Based on an analysis of continuous monitoring of farm animal behavior in the region of the 2016 M6.6 Norcia earthquake in Italy, Wikelski et al., 2020; (Seismol Res Lett, 89, 2020, 1238) conclude that animal activity can be anticipated with subsequent seismic activity and that this finding might help to design a "short-term earthquake forecasting method." We show that this result is based on an incomplete analysis and misleading interpretations. Applying state-of-the-art methods of statistics, we demonstrate that the proposed anticipatory patterns cannot be distinguished from random patterns, and consequently, the observed anomalies in animal activity do not have any forecasting power

    Joint inversion of seismic data for temperature and lithology in the Eastern Alps

    Get PDF
    The high density SWATH-D and AlpArray seismic networks provide a unique opportunity in the Eastern Alps to resolve the complex plate configuration and investigate how the crustal structure seen today reflects the dramatic changes in mountain building style and reorganisation of plate boundaries at about 20 Ma. This study complements the partner project where scattered wave tomography is applied to the same area (presented in the poster ‘Applying scattered wave tomography and joint inversion of high-density (SWATH D) geophysical and petrophysical datasets to unravel Eastern Alpine crustal structure’, Tilmann et al). In order to bring together the seismological and geological-mineralogical constraints in a probabilistic self-consistent way, we employ the joint inversion of seismological and petrophysical data sets. Receiver functions and surface wave dispersion curves, calculated in partner projects, are usually jointly inverted for elastic properties. By utilising the strengths of Markov Chain Monte Carlo inversion, we are able to instead parameterise our model by temperature and mineral assemblage. By inverting seismic data directly for the crust’s constituent mineral assemblages, we are led to a deeper understanding of intra-crustal structure, temperature, and petrophysical properties of crustal layers. A further significant advantage is in interpretation where the probabilities of certain lithologies being present allows for a more seamless integration of qualitative geological data and a reduction in interpretation biases compared to when only seismic velocities are presented

    Crustal Structure of the Indochina Peninsula From Ambient Noise Tomography

    Get PDF
    The collision between the Indian and Eurasian plates promotes the southeastward extrusion of the Indochina Peninsula while the internal dynamics of its crustal deformation remain enigmatic. Here, we make use of seismic data from 38 stations and employ the ambient noise tomography to construct a 3‐D crustal shear‐wave velocity (Vs) model beneath the Indochina Peninsula. A low‐Vs anomaly is revealed in the mid‐lower crust of the Shan‐Thai Block and probably corresponds to the southern extension of the crustal flow from SE Tibet. Although the Khorat Plateau behaves as a rigid block, the observed low‐Vs anomalies in the lower crust and also below the Moho indicate that the crust may have been partially modified by mantle‐derived melts. The strike‐slip shearing motions of the Red River Fault may have dominantly developed crustal deformation at its western flank where a low‐Vs anomaly is observed at the upper‐middle crust

    Continental Break-Up under a Convergent Setting: Insights from P Wave Radial Anisotropy Tomography of the Woodlark Rift in Papua New Guinea

    Get PDF
    To explore the dynamic mechanism of continental rifting within a convergent setting, we determine the first P wave radial anisotropic tomography beneath the Woodlark rift in southeastern Papua New Guinea, which develops within the obliquely colliding zone between the Australian and southwest Pacific plates. The rift zone is depicted as localized low-velocity anomalies with positive radial anisotropy, which rules out a dominant role of active mantle upwelling in promoting the rift development and favors passive rifting with decompression melting as main processes. Downwelling slab relics in the upper mantle bounding the rift zone are revealed based on observed high-velocity anomalies and negative radial anisotropy, which may contribute to the ultra-high pressure rock exhumations and rift initiation. Our observations thus indicate that the Woodlark rift follows a passive model and is mainly driven by slab pull from the northward subduction of the Solomon plate
    • 

    corecore